Table 2: Timing Results for 6 of 17 experimental studies

Experiment # 1 3 4 16

NIV 3 3 3 3

DD time (secs) 4056 2948 4312 5300 24610 5604
DD iters 1000 1000 850 1000 650 850

top .0000984 .0001052 .0001231 .0001286 .0001213 .0001p12
AD time (secs) 10376 9994 10156 9700 3543( 1013p
AD iters 575 710 425 425 650 850

tap .0004377 .0005021 .0005797 .0005536 .0001747 .00021190
relative work ratio 4.449 4.775 4.710 4.306 1.440 1.807
(tan/tpp)

Table 3: DD and AD timings for geometric sensitivities with Baldwin-Lomax turbulence
model on 97x25x17 grid, NIV ranges from 1 to 48. Flow solver was executed for 50 iterations.

NIV 1 2 4 6 8 12 48
DD time 174 261 435 609 783 1131 4263
AD time 254 360 593 2034 2230 2298 3846
relative work ratio 1.46 1.38 1.36 3.34 2.85 2.03 .902
(tap/top)
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Table 1: Numerical results. (17 Experimental Studies)

exp flow Tlow grid size [ C C
o # | case| type L D M
;qE) _8 M a Re M a Re M a Re
gé 1 1 I 97x25x17| 1.0003| .9999 1.0000| .9999 1.0002| .9999
“g’{g 2| 2 L 97x17x17 * 1.0000] * 1.0004| * 1.0000] * 1.0000] *
538 3| 3 L 97x17x17| 1.0028| 1.0000| 1.0000| .9998 | 1.0001| 1.0000| .9985 | 1.0000| 1.0001
z 4| 4 | T,ML | 97x25x17 | 1.0000| 1.0000| 1.0007| 1.0000| 1.0000| 1.0000{ .9999 | 1.0000| 1.0012
5|1 4 T,BL | 97x25x17| 1.0000( 1.0000{ .9991 | 1.0000| 1.0000| 1.0000| 1.0000| 1.0000| .9961
Qo Tow | Tow rd size
ES case| type ° C o Cu
'g § VIS2 VIS4 VIS2 VIS4 VIS2 VIS4
% 3 6| 4 T,BL | 97x25x17 .9972 .9943 1.0008 1.0015 .9954 1.0016
) Tow | Tow rd size
g’ :aqé case| type ’ C o Cu
o= K A+ K A+ K A+
§ é 71 4 T,BL | 97x25x17 .9980 .9997 .9882 .9950 .9879 .9997
o - 8| 4 T,BL | 193x49x33  .9999 .9997 1.0000 1.0001 .9998 .9999
ic) o 9| 5 T,BL | 193x49x33  .9997 .9996 .9998 1.0027 .9997 .9996
5 g 10| 4 T,JK | 193x49x33 .7874 1.0083 7750 1.0403 .8037 .7359
= 11| 4 T,JK | 193x49x33 .9940 9694 .9826 .9544 :9935 1.0191
12| 5 T,JK | 193x49x33 1.0513 .7680 9512 -.0807 1.0355 7363
ow | Tow rd size
2 ,5 a case| type ° CL CD CM
B E 5 Cip | XtipLE | ZtipLE | Ctip | XtipLE |ZUP.LE| Gip | Xtip,LE | Ztip,LE
%'g (_% 13| 1 I 97x33x17| 1.0000| 1.0000( 1.0000| 1.0074| 1.0000| 1.0000( 1.0000| 1.0000| 1.0000
o gL 2 T,BL | 97x33x17| .9939 | 1.0062| .9745| .5938 | 1.0007| .7690 | .9629 | .9981 | 1.0781
15| 6 T,BL | 97x33x17| 1.0091| 1.0033| 1.0005| .7066 | 1.0005| .8238 | 1.0105| .9988 | 1.0170
Tow | Tow rd size
'% é < case| type ’ C o Cu
g % § Oroot Otip Oroot Otip Oroot Otip
g é QLi16| 4 T,BL | 97x33x17 .9996 1.0009 .9996 1.0001 9991 1.0012
17| 6 T,BL | 97x33x17 .9998 1.0008 .9997 1.0002 .9995 1.0011

1. ONERA M6,M = .84,a = 3.06, inviscid
2. ONERA M6,M = .20,a0 = 0°, Re= 5000
3. ONERA M6,M = .20,a = 1°, Re= 5000

4. ONERA M6,M = .84,a = 3.06, Re= 11.7x16
5. ONERA M6,M = .84,a = 5.08, Re= 11.7x16
6. ONERA M6, NACA 00098 AirfoilM = .84,a = 3.06, Re= 11.7x18

(As described in Subsection 5.3, each number in the shaded portion of the table is a ratio of the AD—generated derivative value

Dap to the DD—generated derivative valugd In experiment 1, the blank entries indicate derivatives that were computed to
be zero by bot,p andDpp. In experiment 2, each “*” indicates a ratio having a highly sudpggtvalue.)
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with respect to non-geometric inputs, geometric inputs, ande
algorithmic and physics modeling parameters. Our experi-
ments demonstrate that the AD method has several distinct,
advantages in comparison to DD:

» AD requires a short, initial, code-development lead time *
to obtain SD codes capable of providing accurate SD.
Our initial application of ADIFOR to TLNS3D required
O(man-month) time. Subsequent efforts requid¢chan-

Time and space required to manage the data from multi-
ple perturbed function evaluations.

Time required to verify that the DD step-size is providing
accurate SD approximations.

Time required to compute DD by central differences, if
one-sided divided differences are not able to provide
accurate SD approximations.

week) or less. It should be stressed that, from a purely mathematical point
of view, the differentiation of iterative processes does not

e Accurate SD can be computed without the need to deter.
mine a step-size for the DD perturbation capable of pro-
viding an accurate derivative approximation. This is
especially important in cases, such as the experiment to
compute geometric sensitivities with respect to planform
derivatives, in which DD failed to produce accurate

different perturbation sizes.

seem to be a problem, despite the fact that the assumptions of
known derivative convergence theorems have not been veri-
fied and are almost certainly not satisfied by multigrid algo-

rithms. Since even the convergence of the iterates themselves
has not been proven under reasonably general assumptions,

al

L ) . . attempts to prove the convergence of their derivatives seem
approximations to the SD's despite several attempts W|tIE)

remature. As our theoretical studies and numerical experi-
ments indicate, one may expect that both solutions and deriv-

» Accurate SD can be computed for code that has been atives converge at about the same rate once the iteration has
deemed to be too complicated to be differentiated by  settled down.

hand. For example, in the 2—-D quasi—analytical SD code
of reference 10, the turbulence model was deemed too
complicated for differentiation by hand,; its treatment as
constant led to sizable relative errors in some resulting
global sensitivities. ADIFOR, however, successfully dif-
ferentiated the TLNS3D Baldwin-Lomax turbulence
model providing answers consistent with those produce
by DD.

7. Future Work

We are considering several approaches to reduce the cost of
dAD for iterative flow solvers.

First, we are investigating the “by-hand” application of AD in

+ Small derivative values can easily be calculated. DD  the context of an incremental iterative strategy. This approach
accuracy for small derivatives is often suspect. should have two beneficial effects. Since less code will be

e “Consistent” derivatives of oscillatory output functions
can be obtained. For cases for which the convergence
was poor due to a noisy output, the DD based upon
instantaneous output values failed to adequately approx

processed by AD, the space required will be significantly re-
duced. This reduction in space, in turn, means that the number
of design variables can be increased, leading to a significant
jmprovement in vector efficiency and consequent reduction

mate the SD. The AD code appeared to capture severaln computational effort.

meaningful digits of each SD computed for the turbulent
case using the noisy Johnson-King turbulence model.

Second, we are investigating automatic “deactivation” con-

cepts in which an attempt will be made to avoid the unneces-

» Convergence of the SD via AD can be monitored duringSary differentiation of preconditioners and other
code execution, whereas SD via DD are usually con-  jntermediates that affect only the solution process but not the
structed after the runs are complete, and this precludes so|ytion function and its derivatives. Unless the original code
convergence monitoring during execution. is appropriately structured, “deactivating” such intermediates

) ) ) will be a difficult task. However, the resulting simplified de-
Unfortunately, at this stage, the time required for an AD-augyjyative calculation should be very efficient.

mented code to compute derivatives is still larger than we

would like it to be for codes as complex as TLNS3D. As re-Thjrd, we are investigating techniques to improve the vector-
ported above, for a sufficiently large number of design vari-ization and parallelization of the derivative code, so that their

ables, AD outperforms DD; however, the memory required rynning time is at worst equal to that of the original code mul-
for large numbers of design variables, is prohibitive. AD fares;pjied by the number of design parameters.

far better if all of the costs actually incurred by using DD are
considered:



points. Similarly, definel to be the time required to com-Experience gained through manually postprocessing the
pute sensitivities by AD takingmultigrid iterations overa ~ TLNS3D code will be incorporated into future versions of
grid with G grid points. Then, definth arfd\D as fol- ADIFOR, thereby improving vector efficiency and decreas-

lows. ing user intervention.
T To document the impact of number of independent variables
top = (GDxDI) (5)  onthe efficiency of TLNS3[),, a series of experiments were

run with number of independent variables ranging from 1 to
48 as shown in Table 3. It is significant to note how the time

and per design variable increases sharply in going from 4 to 6 de-
sign variables, and then slowly decreases as the number of de-
T sign variables increases beyond six. This is due to the Cray
tap = (G/:(Dl) : (6)  compiler which will only automatically unroll the innermost

loops up to length 5. However, as the time per design variable

indicates, extremely good vectorization was achieved with

The ratio of t tot,, . referred to as the “relative work the 48 design variable case.

ratio,” indicates the re?ative amount of work performed by an

iteration of the AD code at a grid point to that performed byMemory requirements for the AD codes created in the exper-

an iteration of the DD code at a grid point. imental studies, in general, required between NIV and NIV+1
times as much memory as that required for the original

Table 2 presents timing results from five of the experimentallLNS3D code. One would expect that the memory would in-

sensitivity studies. Again, each experiment is identified by crease by a factor of about NIV+1 over the original code in

experiment number. The inefficiency of the AD code, even order to accommodate calculation and storage of the function

with loop unrolling by the Cray compiler, is captured by the plus the NIV derivatives by an iterative scheme. ADIFOR de-

relative work ratios of 4.449, 4.775, 4.710 and 4.306 for nonPendence analysis reduces the memory requirements some-

geometric sensitivity experiments 1, 3, 4 and 5. what by augmenting only the “relevant” portion of the
function code.

The Cray compiler Flowtrace and Loopmark options were

used to identify subroutines, function calls, and “do loops” 5.5 EaseOf-Use

that did not vectorize as well as the corresponding ones in the

original code and, thus, probably consumed far too much exX-he experimental sensitivity studies demonstrated that reli-

ecution time in the AD code. After this evaluation, it was posable (and verified) SD could be obtained for complex CFD

sible to use simple code modifications (changing one codes inO(man-week), an enormous improvement over the

recurrent subroutine argument to a parameter, restoring in-time required to construct a “by-hand” derivative code. After

trinsic Cray vector functions which ADIFOR could not pro- an initial successful application of ADIFOR to a code such as

cess) and more compiler options (use of the aggressive ~ TLNS3D, subsequent applications to compute new sets of

compile option, and inlining of the Fortran intrinsic and error Sensitivities should take on(man-hours) which is quite

handling functions provided by ADIFOR) to improve the de-competitive with divided differences, but is free of the uncer-

rivative code vectorization. After this processing, some degtainty inherent in the use of divided differences.

radation of the vector inefficiency still exists, most likely

caused by the inability of the Cray compiler to vectorize theAs an indication of the ease—of-use of ADIFOR and the un-

more complex loops generated by ADIFOR. Manual loop reliability of DD, the majority of time dedicated to perform-

segmentation, known as loop distribution in the compiler ~ ing each of these experiments was spent verifying the

community, allows the compiler to vectorize more of the re-ADIFOR-generated derivatives by DD — not applying ADI-

maining loops. Additional segmentation may recover even FOR to generate the AD code.

more of the vector performance. Both the turbulence model-

ing parameter sensitivity studies and geometric sensitivity

studies were executed with this “hand—tuned” code. The im- 6. Conclusions

proved efficiency of this AD code is demonstrated by the rel-

ative work ratio of 1.440 for the viscous modeling parameteraytomatic differentiation of TLNS3D, an efficient, complex,
sensitivity of experiment 8 and the relative work load of  state of the art 3-D CFD code, has been quantitatively dem-
1.807 for the geometric sensitivity of experiment 16. onstrated to provide accurate SD of output flow properties



ratio of the AD—generated derivative valugdXo the DD—  were one-sided forward differences, but recent calculations
generated derivative valuegyB. A ratio near unity indicates using one-sided backward, and central differences show little
good agreement between the AD and DD derivatives. Noteimprovement over these results. We believe the sensitivities
that in almost all cases AD and DD were in agreement to bef the wing drag coefficier®p to the tip leading edge span-
tween 3 and 4 significant digits of accuracy. wise location g, | e computed by AD to be correct.

Experiments 1 through 14 were run using a restart-based aphe numerical results reported here show that even the naive
proach in which the original TLNS3D code was run to rea- application of ADIFOR to multigrid solvers viewed essen-
sonably good convergence and then a restart solution file waglly as black—box programs can produce accurate sensitivity
generated. Then, the SD augmented TLNS3D code was ruinformation at tolerable costs. In fact, for the majority of the
from the restart file to converge the SD. Experiments 15  sensitivity studies, all calculated derivatives could be repro-
through 17 were run from a scratch start. For more informaduced with several digits agreement by carefully evaluated
tion on these two approaches, again refer to references 7, ®D.
and 9.
5.4 Running Time and Storage Requiements
In experiment 1, the blank entries indicate derivatives that
were computed to be zero by b@jRp andDpp. In experi- To generate a code that computes sensitivities with respect to
ment 2, each “*” indicates a ratio having a highly suspect a set of independent variables of size NIV, ADIFOR inserts
Dpp value computed by taking function differences of mag-vector loops of length NIV to compute “gradient objects” for
nitudeO(lUl“). The sensitivities computed by AD have each intermediate involved in the function evaluation, using
magnitudeO(lUS) and we believe them to be correct. roughly NIV times as much memory as the original code. If
NIV is sufficiently large, then the resulting AD code will be
Experiments 10, 11 and 12 highlight the differences betweean efficient vector code. For standard test problems, ADIFOR
the asymptotic convergence behavior of the Baldwin—Lomayachieves and undercuts this bound regularly on scalar and su-
and Johnson—King turbulence models. At the low angle—of-per—scalar chip%? Unfortunately, the large memory require-
attack @ = 3.06) condition of experiments 10 and 11, the ments of TLNS3D and the factor of NIV expansion in
Johnson-King residual converges several orders of magni-memory required for the forward mode of AD, practically
tude and then “hangs up” in an oscillatory low amplitude limits the number of independent variables that can be com-
noise; the Baldwin—Lomax residual can be driven to machinguted by TLNS3[Rp to about 10 for reasonably fine grids.
zero without difficulty. At the high angle—of-attaak € Therefore, all of the vector loops inserted by ADIFOR are
5.06°) condition of experiment 12, the amplitude of the noise“short loops.” With current Cray compiler technology, these
is increased. Noise also appears in the computations for thénner—most short loops prevent the longer TLNS3D outer
dependent variablegs, , Cp andCy,. DD based on such a loops from being pipelined leading to an inordinately long
noisy function cannot be expected to give meaningful SD asunning time. For up to 5 independent variables, significant
indicated by the poor agreement of four of the six sensitivityimprovements can be made to the AD code by making minor
ratios computed in experiment 10. However, the AD's are excode changes “by—hand” and by directing the Cray compiler
pected to give meaningful results because the SD calculatiorte unroll the short vector loops. Unfortunately, these changes
via AD are driven by the most significant digits of the func- are insufficient to create an efficient vector version of
tion evaluation, whereas the DD are constructed by subtracFLNS3Dpp.
tion, where the most significant digits of the function
evaluation are lost. In experiment 11, an attempt was made tBince the multigrid solver and its derivatives appear to con-
factor out the oscillatory noise by “time—averaging” the de- verge at roughly the same asymptotic rate for smoothly con-
pendent variables used in the DD calculation. Underlined valerging functions, the cost of AD versus DD can be assessed
ues in Table 1 indicate ratios calculated udpg, values by comparing the cost of a “single iteration” of the AD code
computed using time—averaged function values computed bgnd the DD code normalized based on grid size. The concept
a sequence of function iterations. Time—averaging signifi- of “single iteration” of the AD code is well defined. For the
cantly improved the agreement between AD and DD in thisDD code, the cost of a “single iteration” is the sum of the
case. Unfortunately, time—averaging had little affect on the costs of each iteration of the NIV+1 perturbed function eval-
agreement between AD and DD in experiment 12. uations required to compute the one-sided DD approxima-
tions.
Experiments 14 and 15 demonstrate a case where DD may be
difficult to use to obtain accurate SD approximations due toDefine T to be the time required to compute sensitivities
the use of a highly stretched grid. The DD used in these ratidsy DD takingl multigrid iterations over a grid with G grid



investigated derivatives with respect to free stream Mach code TLNS3D . Prior to processing with ADIFOR, minor
numberM, angle of attacki, and stream Reynold’s number changes to the TLNS3D code required for ADIFOR were per-
based on mean aerodynamic chBelDerivatives were ver- formed. ADIFOR differentiated through the entire multigrid
ified for inviscid transonic flow, laminar subsonic flow and solution algorithm; the specified dependences were traced

turbulent transonic flow. Both the differentiable mixing—  from independent to dependent variables and the SD code in-
length turbulence model and the Baldwin—Lomax turbulent serted as required. The resulting SD modules were assembled
models were compared for the transonic flow case. into a working code based on the template shown in Figure 3.

The SD code was later modified to improve its performance
The algorithmic parameter sensitivity study investigated theon the Cray Y—-MP as described later in this section.
second- and fourth—order damping coefficients (VIS2 and
VIS4) of the CFD solution algorithm of the TLNS3D code For the algorithmic and physics modeling parameter sensitiv-
which uses a blending of scalar second— and fourth—differ- ity studies, ADIFOR was again applied to TLNS3D, with the
ence artificial dissipation to maintain numerical stability. De-algorithmic and physics modeling parameters identified as
rivatives were verified for transonic turbulent flow. independent variables, to construct the sensitivity code

TLNS3Dpp.
The physics modeling parameter sensitivity study investigat-
ed two turbulence parameters: the Clauser constant K of thin preparation for ADIFOR processing for the geometric sen-
outer—region eddy viscosity coefficient and A+ of the Van sitivity study, ADIFOR was applied to WTCO to generate the
Driest correction to the Prandtl mixing length of the inner-renew code WTCQ with the geometric parameters specified
gion viscosity coefficient. Derivatives were verified for tran- as the independent variables, and the grid coordinates (x, y, z)
sonic turbulent flow. The Baldwin—Lomax turbulence model generated by WTCO specified as the dependent variables. In
was examined on both the 97x25x17 and 193x49x33 grids.addition to generating a grid, WTGQ also generates the de-
The Johnson—King turbulence model was only investigatedrivatives or grid sensitivities to the geometric parameters (ei-
on the 193x49x33 grid due to the excessive noise encounterdiaer planform or section). ADIFOR is then applied to
while trying to converge the residual on the coarser grid. TLNS3D, to create TLNS3k}, with the grid coordinates de-

clared as the independent variables and the flow coefficients
The application of ADIFOR for geometric inputs investigat- as the dependent ones. Both grid and grid sensitivities are
ed derivatives with respect to planform and section parameread as input by TLNS3[3). The grid sensitivities initialize
ters. The planform parameters are the tip chord, the tip the seed matrix within TLNS3[), so that an application of
leading edge streamwise location, and the tip leading edgethe chain rule can be used to calculate the required SD's as
spanwise location {g, X, g, and gp ). The section pa-

rameters are the twist angle, maximum camber, location of dc. dc
maximum camber, and the thickness-to-chord ratio at the L_""L Dd_X (4)
wing root and tip oo CMa%got XCM&%00t Troot Atip: dG dX dG

cmadj,, Xcmay, Tijp)- Derivatives with respect to planform

were computed for both the original ONERA M6 wing and an i ) _ . . )
ONERA M6 planform with a NACA 00098 wing section where G is a generic geometric variable and X is the grid gen-
(that is, a symmetric “four—digit” airfoil of thickness—to—  erated by WTCQyp and used as the input to TLNSZR The

chord ratio 0.098) that approximates the original ONERA Med"id sensitivity arraydX is the seed matrix input to

. . S . dG
wing section. Both inviscid and turbulent transonic flows TLNS3Dap-
were studied.
5.3 Accuracy

All ADIFOR preprocessing of codes for these experiments . )
was performed on a SPARC workstation. All TLNS3D re- Table 1 presents a summary of seventeen experiments inves-

sults were obtained on one processor of the NASA Langleyti9ating the ADIFOR—generated codes WTgand
Research Center Cray Y-MP. TLNS3D,p. Each experiment has been assigned a number

given in the “exp #” column. The flow case column identifies
the configuration and flow condition as indicated in the leg-
end under the table. Flow type labels I, ; T Tg, and Tjk

In preparation for the non—geometric sensitivity studies, indicate inviscid t_ransonic flow, Iaminar sqb_sonic flow, and
ADIFOR was applied to TLNS3D in a very simple and turbulent _transonlc flow modeled with a m_|xmg—length mod-
straightforward manner, with the non—geometric inputs iden€!» Baldwin—Lomax model, or Johnson-King model, respec-

tified as the independent variables, to construct the sensitivitVely- Each number in the shaded portion of the table is a

5.2 ADIFOR Code Pocessing



For the sake of discussion, assume that our iteration for soleated code without some user intervention. Conceptually, one

ing Equation 1 and throughout has the schematic form showmay remove the stopping criterion completely to obtain infi-

in Figure 2. n|te sequences of iterates, and derivative approximations
, which have been shown to converge R-| Ime%{)ﬁphus

result was originally obtained by Gilb&Hand

ChristiansoR® for the case of Newton's method and similar

smooth fixed point iterations.

form=1, ... do
evaIuateR(zm, X,) and stop if it is small

compute a suitable precondmoriérts‘ These results have been extended to quasi—-Newton methods,
updatez . ,= 7, -P R(Z,p where the derivative® . may grow unbounded BUiR,,
endfor still tends to zero, because of the superlinear rate of conver-

FIGURE 2. Original iteration gence’® Whenever the iterates themselves converge super-
linearly there is the danger that the R—linearly convergent
derivative approximations may lag behind. For such meth-

, respectively. ods, itis parucularly |mportant that the stopping criterion en-

. In large—scale

applications, a reasonable Imear rate is often the best one can

achieve, so that the asymptotic rate of convergence is likely

to be the same.

Let the notatiofiR, andR, represen? an%B

Newton's method, for example, is'a partlc)fjlar instance of thi
scheme WItI"Pm defined as follows.

0 1
P = IR O A3)
m- Ogz| O
O fz= ZmD 5. Experimental Studies

. e . In order to evaluate the promised abilities of AD and ADI-
In the fOHOW'.ng' a prime n.Otat'On (such as _) always de- FOR to deliver SD of complex numerical processes accurate-
notes total d!ffgrentl_atlon with respecbmApplymg_AD to ly and efficiently, a sequence of experiments was performed
the schematic iteration shown above, and modifying the sto i which ADIFOR was applied to the WTCO wing grid gen-
pi_ng criterion, provides the derivative iteration shown in eration code and TLNS3D to compute the sets of derivatives
Figure 3. described above. Highlights from those experiments will now
be presented. For more complete information on the results of
these studies, refer to references 7, 8 and 9. For example, in
this overview, almost all of the investigations into the ques-
tion of what actually defines “good convergence for the flow
solver” and “good convergence for the ADIFOR—generated
codes” are ignored.

form=1,...do
R, = R(Z,; %)
_Rm_ Rz(zm’ x*)z'm+ RX(zm, Xy)
if Rm and R'm are small enough stop

compute and its derivativie . . :
P I:)m e The primary concerns about the use of AD in computing SD

Zm+1 ~ “m” "m"m

z =7z —P R —P R

m+ 1 m mm m m
endfor

FIGURE 3. SD augmented iteration

Given z, andZ  , one can obtain the derivative residual

R,ata cost roughly equal to that of evaluatidg

were accuracy, running time requirements and memory re-
quirements of the derivative code generated by ADIFOR.
Ease—of-use was a secondary concern. Accuracy and running
time were assessed by comparing the results of the ADIFOR-
generated code with DD.

5.1 The Experiments

by the number of design parameters (i.e., components in x)Each of the experimental studies investigated derivatives giv-
In particular, this derivative evaluation does not require the €n an ONERA M6 wing described by a C-O mesh. The lift
calculation of the JacobiaR, , which may contain very manycoefficientC,, drag coefficienCp and wing pitching mo-

elements. The stopping criterion based solelyrRn
been replaced by one that also requiRes to be small.
While it is natural to do so, an automatic tool cannot be ex-

has mentCy, were taken as the output of TLNS3D with respect to

differentiation.

pected to detect the stopping criterion in a potentially compliThe application of ADIFOR for non—-geometric sensitivities



properties such as improved convergence rate or improvedcontributes greatly to its overall computational efficiency on

accuracy. the Cray Y-MP. The newly released multiblock version of
TLNS3D, TLNS3D-MB/, promises the flexibility needed

In the studies described below, the WTCO wing grid generdor modeling complex geometric configurations and is basi-

tion code has been coupled with the TLNS3D thin—layer cally organized in incremental iterative form, which may al-

Navier—Stokes code. low for significant improvements in the ADIFOR
applications in the future.

The WTCO wing grid generation is a batch—mode, algebraic,

transfinite interpolation grid generation program. The code

includes the capability to generate grids around wings of at 4. Differentiation of Iterative Functions

least two airfoil sections, described by pairs of coordinates or

NACA four—digit airfoils. In this case, the usual NACA four—_ Despite the lack of convergence theory under realistic as-

digit airfoil family has been expanded by allowing the maxi-g,;mntions, iterative techniques are now the state of the art in
mum camber (cmax), location of maximum camber (xcmax)z_p cED codes for nontrivial geometries and stream condi-
and the thickness—to—chord ratt (0 be specified as real 4524 The jterative flow solvers may take hundreds of steps
number inputs, rather than deduced from an integer designagq often involve discontinuous adjustments of solution op-
tion. A true NACA 2412 has the cmax = 0.02, xcmax = 0.4, grat0rs. grids, shock waves, or free boundaries. This iterative
andt = 0.12; the WTCO program has been modified to allowp, e of advanced CFD codes poses the most significant

for small perturbations to this shape, such as cmax =0.02002y,jenge regarding the automatic generation of sensitivities.
xcmax = 0.4004, and= 0.12012. These modifications were

necessary to perform the DD runs used to verify the SD caly applied to a CFD code as a “black-box,” ADIFOR would

culations by AD. The user specifies spacing constants at Sey¥m )y differentiate the whole iterative process. Unfortunate-
eral points on the grid boundaries as well as the type of |y, 1he resulting sensitivity code would only apply the stop-
boundary. The user also specifies the type of boundary surgng criterion from the original iterative process which has
face, interior interpolation, and the amount of smoothing réy,een shown to be insufficient to guarantee convergence of the
quired. WTCO was chosen for use in this study because ithagnsitivities themselves. If the stopping criterion of the sensi-
performed reliably with the flow solver on many previous 0Cy;ity code is modified to monitor convergence of the sensi-

casions; it is non-iterative and does not include any codingyyities as well, then the sensitivities computed by AD should

extraneous to the grid generation (such as graphics). The pa accyratd®22Theoretical results on the rate of conver-

source code necessary for AD application was readily availyence of derivatives for iterative processes have not yet been

able. 'I_'he total number of_ design vgrlables _can be changed Q%(tended to multigrid methods, such as that underlying

changing the number of input sections which describe the 1) Ng3Dp, hut our experience so far indicates that for smooth-

wing. ly converging functions, the derivatives and the function con-
) ] o ) verge at roughly the same asymptotic fate.

The TLNS3D code is a high—fidelity aerodynamic computer

program that solves the time-dependent 3-D thin—layer  cqngjger a function of. defined implicitly by the following

Navier—Stokes equations with a finite—volume formulafibn. | iinaar system

The code employs grid sequencing, multigrid, and local time '

stepping to accelerate convergence and efficiently obtain

steady—state high Reynolds number turbulent flow solutions. R(zx) =0 1)

When temporally converged to a steady—state solution, the

method is globally second—order accurate. The TLNS3D

code is a central—difference code that employs second—ord@ihe goal of an iterative solver is to find the value

central differences for all spatial derivatives and employs a z, = z(x,) of the function implicitly defined biR. The

blending of scalar second- and fourth—difference artificial question is under what circumstances does an AD version of

dissipation to maintain numerical stability. The solution is the code for this rootfinding process compute the following

advanced explicitly in time with a five—stage Runge—Kutta desired derivatives.

time—marching algorithm. The code includes both the Bald-

win—-Lomax (B-L) and Johnson—King (J—K) turbulence mod- dz

el2>26This code has been used successfully in a number of Z, = 4 2)

applications across the flight speed range from low subsonic X = X

to hypersonic and for a number of flight vehicle types. The

TLNS3D code is a highly vectorized code and this aspect




implementation is usually substantial. niques in sophisticated ways. For instance, we expect that the
derivative code created by applying AD to the components of

In contrast to the approximation of derivatives by DD, AD a CFD code for use in an incremental iterative strategy will

does not incur any truncation error so that the resulting derisignificantly outperform the code generated by fully differen-

ative values are usually obtained with the working accuracytiating the CFD iterative solver.

of the original function evaluation. In contrast to fully sym-

bolic differentiation, both operations count and storage re-

guirements can be bounded a priori in terms of the 3. SD Requiements for CFD

complexity of the original function code for all modes of AD.

In many cases, the c_alculat_ions initiated by an AD tool for thel'he computational process of CFD, when coupled with a grid

evaluat_lon _of derivatives mirror those of a carefully ha”dw”t'generator, maps geometric shape inputs, non—geometric

ten derivative code. For more information, refer to the com-graam inputs and a collection of algorithmic and physical

prehensive C7°"eCti°n on AD theory, implementation, and  qeling parameters to a flow solution as shown in Figure 1.
applicationd’, and a review of the earlier AD todfs

ADIFOR uses sophisticated program analysis techniques tp
extract control flow and dependence information directly Geometric
from the user’s source code to determine which intermediate
variables within a program require the propagation of deriva-

Non-geometric
Shape Inputs Stream Inputs

tive information®2OThis approach allows for a simple, in-

tuitive interface and may greatly reduce the space and timg

requirements of the derivative code by eliminating the neec ] Flow

to compute derivatives for all intermediate quantities in the Grid " CFD — .
program. Application of ADIFOR to Fortran codes requires| | CGenerator Solution

specifying the independent and dependent variables to be
used in forming the SD. \ /

The ADIFOR tool produces portable Fortran 77 code and a Algorithmic and
cepts almost all of Fortran 77, in particular, arbitrary calling physical modeling
seqguences, nested subroutines, common blocks, and equiya- parameters
lences. The ADIFOR—generated code employs a consistent
subroutine naming scheme that allows for code tuning, the i
use of domain—specific knowledge, and the exploitation of FIGURE 1. Block diagram of the CFD process
vendor—supplied libraries. ADIFOR—generated code can be

used in various ways. Instead of simply producing code to o . . . _
compute the Jacobian ADIFOR produces code to compute G€0metric inputs include wing planform and wing section

J * S where the “seed matrix8is initialized by the user. parameters. Non—geometric inputs include the free stream
Therefore, ifSis the identity, ADIFOR computes the full Ja- Mach numbeM, stream Reynold’s number based on mean
cobian; whereas Bis just a vector, ADIFOR computes the 2€rodynamic chorle and angle of attaak. Algorithmic
product of the Jacobian by a vector. “Compressed” version&nd phy_s!cal modellhg parameters include the coefﬂqents of
of sparse Jacobians can be computed by exploiting the sanfige artificial dissipation terms and parameters used in turbu-
graph coloring techniques that are used for DD approxima-'ence modellng which cor)tro! stability and convergence ac-
tions of sparse Jacobiafs?2The running time and storage Celeration. The flow solution includ€, the wing lift
requirements of the ADIFOR—generated code are roughly coe€fficient,Cp, the wing drag coefficient, arg),, the wing
proportional to the number of columns®fso the computa- p|Fch|ng moment. Interegtmg SD for.the: complete grid gener-
tion of Jacobian—vector products and compressed Jacobiarfion and CFD process include derivatives of any of the out-

requires much less time and storage than does the generatiBHtS €L, Cp or Cy) with respect to any of the geometric or
of the full Jacobian matri& non-—geometric inputs or any of the algorithmic and modeling

parameters. Geometric and non—geometric sensitivities might

Although AD technigues can be applied to augment codes iﬁe used tO_ guide an MDO System,l fo.r.example, in determin-
their entirety, significant reduction in the space and time re-iNg @n optimum wing shape. Sensitivities with respect to al-

quired to compute sensitivities are often possible if domain-gorithmic and modeling parameters could be used in a formal
specific application knowledge is coupled with AD tech- ~ Parameter identification regime to achieve particular program

()
1




Numerous research efforts have examined the issue of effi-This paper is organized as follows. Section 2 briefly over-
cient computation of SD for CFD, but most have concentratviews automatic differentiation and ADIFOR. Section 3 de-
ed on the use of direct solvers to solve the large systems ofcribes TLNS3D and examines sets of SD that might be
linear algebraic sensitivity equations generated by direct difneeded in an MDO context. Section 4 discusses the applica-
ferentiation of the system of discrete nonlinear algebraic  tion of AD to iterative CFD solvers. Section 5 presents results
equations which model the Euler or thin—layer Navier—Stokedrom the experimental studies in which ADIFOR was applied
(TLNS) equations for 2—D flow. Unfortunately, the extreme-to compute sets of SD like those described in Section 3.

ly large computer storage requirement of direct solvers mak&ection 6 and Section 7 conclude the paper and present ideas
their extension to 3—D implausible. Advanced 3—-D CFD  for future work. As will be seen, the results of these efforts are
codes, therefore, typically employ iterative solution algo- both significant and encouraging; but challenges remain.
rithms to solve the implicit nonlinear partial differential equa-

tions that express the fluid conservation laws; it is exactly

those iterative techniques that must be augmented with SD 2. Automatic Differentiation and ADIFOR
computations.

. . ; - Automatic differentiatiof? is a chain-rule—based technique
Typical techniques for "augmenting” a code to COmpute Serg,; gy5)yating the derivatives of functions defined by com-
sitivities include "by hand,” *by use of a symbolic expression y,,tar programs with respect to their input variables and has
differentiator” and “by approximation via divided differenc- ,oqp, investigated since 1960. For the most part, implementa-
es.” Unfortunately, none of these techniques can be counteghns of AD were conceived by the need for accurate first—

on to deliver fast and reliable derivatives in a flexible and 5 higher—order derivatives in a certain application. Distri-
timely fashion for large computer codes. Hand coding of dep, ;sion, for the mainstream of scientific computing was not a
rivatives is impractical and symbolic approaches may réquirénajor concern. Recently, progress towards a general—purpose
as much effort as hand coding. Divided differences (DD) mayxp to0l has been made with the development of ADIFOR by

not be accurate and are obtained too slowly. Since DD e”oréjoint effort of Argonne National Laboratory and Rice Uni-

tend to grow with problem complexity, larger models will ¢ ity 13-19\DIFOR differentiates programs written in For-

have to deal with ever—more—inaccurate derivatives, even tran 77; that is, given a Fortran procedure (or collection of

though a faithful modeling of their complex nonlinear behav- rocedures) that describe a “function” and an indication of
ior requires very accurate derivatives. In addition, the cost of hich variables in parameter lists or common blocks corre-
DD will restrain the magnitude of problems that can be do”espond to “independent” and “dependent” variables with re-

in practice. spect to differentiation, ADIFOR produces Fortran 77 code

o o ] that computes the derivatives of the dependent variables with
Automatic differentiation (AD) promises to address the needrespect to the independent ones.

for a flexible and scalable technology capable of computing

derivatives of large codes accurately, irrespective of the cony, tomatic differentiation has two basic modes which are
plexity of the model. This paper presents an overview of a Sy |y referred to as the forward and reverse modes. The for-
quence of three efforts designed to determine the potential Qf5rq mode computes derivatives of intermediate variables

AD with respect toﬁQe SD requirements of MDO for ad- it respect to the independent variables during a “forward”
vanced CFD codes.” In each of these efforts, the ADIFOR ' 445 through a function. In contrast, the reverse mode propa-

automatic differentiation tool was applied to TLNS3D, a stat€yates derivatives of the final result with respect to intermedi-

of the art, 3-D, thin-layer Navier—Stokes, multigrid flow  5te quantities during a “reverse” pass through the function.
solver. In each of these efforts AD was applied to compute Ignoring sparsity issues, the running time and storage re-

sensitivities of the entire iterative multigrid process. In con- quirements of the forward mode are roughly proportional to
trast to this "black—box" approach, automatic differentiation i nymper of independent variables. The reverse mode is
could be applied to components of a CFD solver to obtain dgqssely related to adjoint methods and has a lower operations
rivative computations in an incremental iterative form analog nt for gradient computations, but potentially very large
gous to quasi-analytical hand differentiated code. The memory requiremenﬂsﬁ. ADIFOR employs a hybrid of the
incremental iterative form, also known as the “delta” or “cor-tynvard and reverse modes of AD. That is. for each assign-
rection” form, is commonly used in CFD for obtaining the SO-nent statement, code is generated for computing the partial
lution state vector from the nonlinear governing flow derivatives of the result with respect to the variables on the
equatlons. References 10 and 11 dlscu§s the beneﬁts of USIRBht_hand side and then the partials are employed in the for-
this form to solve the large systems of linear equations neegz, g mode to propagate overall derivatives. The resulting de-

ed to obtain SD. Ongoing efforts are evaluating these alterng:oose in complexity compared to an entirely forward mode
tive strategies.
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Abstract 1. Intr oduction

Automated multidisciplinary design of aircraft requires the In the past, design of flight vehicles typically required the in-
optimization of complex performance objectives with respectieraction of many technical disciplines over an extended pe-
to a number of design parameters and constraints. The effedbd of time in a more or less sequential manner. At present,
of these independent design variables on the system perforsomputer—automated discipline analyses and interactions of-
mance criteria can be quantified in terms of sensitivity derivfer the possibility of significantly shortening the design cycle
atives for the individual discipline simulation codes. Typical time, while simultaneous multidisciplinary design optimiza-
advanced CFD codes do not provide such derivatives as pafon (MDO) via formal sensitivity analysis (SA) holds the

of a flow solution. These derivatives are expensive to obtairpossibility of improved designs.

by divided differences from perturbed solutions, and may be

unreliable, particularly for noisy functions. In this paper, au-Procedures for MDO of engineering systems have been ad-
tomatic differentiation has been investigated as a means ofdressed by Sobieski and oth&r8Sobieski proposes a uni-
extending iterative CFD codes with sensitivity derivatives. Infied system SA guided by system sensitivity derivatives
particular, the ADIFOR automatic differentiator has been ap¢SD); the optimizer code or algorithm that uses these SD is
plied to the 3-D, thin—layer Navier—Stokes, multigrid flow the outermost loop of the entire design process. The objective
solver called TLNS3D coupled with the WTCO wing grid  and constraint functions are now generally composed of out-
generator. Results of a sequence of efforts in which TLNS3[put functions from several disciplines. Each single discipline
has been successfully augmented to compute a variety of semalysis code is then to supply not only the output functions
sitivities are presented. It is shown that sensitivity derivativegequired for the constrained optimization process and other
can be obtained accurately and efficiently using ADIFOR, aldiscipline analysis inputs, but also the derivatives of all of
though significant advances are necessary for the efficiencyhese output functions with respect to its input variables.

of ADIFOR-generated derivative code to become truly comThese variables include not only the MDO variables, but also
petitive with hand—differentiated code. output functions from other disciplines that implicitly depend
on the MDO variables. Thus, a key technology required for
MDO procedures is the capability to calculate the SD of out-
puts from the various analysis codes with respect to a set of
design variables. Since the envisioned flight vehicle concept
* Research Scientist, Associate Member AIAA determines which objectives, constraint functions, MDO de-
sign variables, and discipline analysis codes are required to
model the pertinent physical aspects throughout the flight re-
gime (i.e., the particular MDO problem), flexibility and auto-

§ Senior Research Scientist mation, in addition to computational efficiency, are needed in

. . , , SD computations.
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